

Early Ideas

- Leucippus and Democritus (Greek), c. 5th Century BCE
 - All matter was composed of small, finite particles called atomos
 - Moving particles that differed in size and shape and could join together

Leucippus – Didier Descouens (<u>CC BY-SA 4.0</u>) Democritus – unknown (Public Domain)

• Aristotle (Greek), 384-322 BCE

- Matter is composed of four "elements"
 - · Fire, air, earth, water

٠

- John Dalton (English), 1807
- Revolutionized Chemistry with his atomic theory

Dalton – Charles Turner, Library of Congress Print and Photograph Division, digital ID: <u>cph.3b12511</u>, Public Domain

• Experimentally determined the charge on an electron

Robert A. Millikan – unknown (Mondadori Publishers) (Public Domain) Original oil-drop apparatus – unknown (Public Domain)

- In 1904, Thomson proposed the "plum pudding" model of the atom. (Based on the new evidence)
 - A positively charged mass with an equal amount of negatively charged electrons embedded in it.

• Showed that atoms are mostly empty space.

Ernest Rutherford – Bain News Service, Library of Congress Prints and Photographs Division. Digital ID <u>option.a6570</u> (Public Domain) Hans Geiger – unknown (Public Domain) Ernest Marsden – S P Andrew Lid Public Domain) Geiger-Marsden Apparatus – Xuzon (<u>CC 97/SA3.0</u>)

- From this result, Rutherford proposed that an atom had a very small positively charged nucleus, in which most of the mass is concentrated, surrounded by negatively charged electrons.
- Rutherford also discovered that the positive core was multiple particles that he called protons.

- Werner Heisenberg (German) and Erwin Schrödinger (Austrian), 1926
 - First introduced the modern understanding of atoms that electrons are not in orbits but rather in regions that were called orbitals

Wemer Heisenberg – German Federal Archive (<u>CC BY-SA 3.0</u>) Erwin Schrodinger – Nobel Foundation (Public Domain) Orbitals – Rakudaniku (Public Domain)

Atomic Structure & Symbolism

- Atoms have a very small nucleus composed of positively charged protons and uncharged (neutral) neutrons surrounded by a much larger space containing negatively charged electrons.
 - The diameter of an atom is on the order of 10^{-10} m, whereas the diameter of the nucleus is roughly 10^{-15} m (about 100,000 times smaller).

• If the nucleus were the size of a blueberry, then the atom would be the size of a football field.

Football field, Stadium High School, Tacoma, WA – Curtis Cronn (<u>CC BY-NC-ND 2.0</u>) Blueberries – Bill Young (<u>CC BY-NC-ND 2.0</u>)

- Protons, neutrons, and electrons have very small masses and charges.
 - A proton has a mass of 1.67×10^{-27} kg and a charge of 1.6×10^{-19} C.
- Special units are used to describe these very small values.
 - Atomic mass units (amu)
 - Fundamental unit of charge (e)
 The proton has a mass of 1 amu and a charge of +1 e.

Properties of subatomic particles						
Particle	Symbol	Charge (e)	Mass (amu)			
proton	p⁺	+1	1			
neutron	n ⁰	0	1			
electron	e⁻	-1	$\frac{1}{2000}$			

- The number of protons in the nucleus of an atom is the **atomic number (Z)**
- The number of protons plus neutrons in the atom is the **mass number (A)**
- The number of neutrons is the mass number minus the atomic number
- The number of electrons in an atom is equal to the number of protons (atomic number)

Electron Energy Levels

- Electrons occupy specific energy levels or shells
- A specific number of electrons occupy each shell as follows:
 - 1st shell (K): 2 electrons
 - 2nd shell (L): 8 electrons
 - 3rd shell (M): 18 electrons

- Electrons fill orbit shells in a consistent order.
- Under standard conditions, atoms fill the inner shells (closer to the nucleus) first, often resulting in a variable number of electrons in the outermost shell.
- Electrons follow the octet rule
 - An atom is more stable energetically when it has 8 electrons in its most outer or valence shell.

Bohr Diagrams

- Bohr diagrams show electrons orbiting the nucleus of an atom somewhat like planets orbit around the sun.
- In the Bohr model, electrons are pictured as traveling in circles at different shells, depending on which element you have.

Chemical Symbols

- A chemical symbol is an abbreviation that we use to indicate an element or an atom of an element.
 - Some symbols are derived from the common name of the element.
 - Some symbols are abbreviations of the name in other languages.
 - If there are two (or more letters) only the first letter is capitalized.

Element	Symbol	Element	Symbol
Aluminum	Al	Iron	Fe (ferrum)
Calcium	Са	Lead	Pb (plumbum)
Carbon	С	Sodium	Na (natrium)
Chlorine	CI	Potassium	K (kalium)
Oxygen	0	Gold	Au (aurum)
Helium	He	Silver	Ag (argentum)
Hydrogen	Н	Tin	Sn (stannum)
lodine	I		

Chemical Formulas

• A chemical formula is a representation of a compound that uses chemical symbols to indicate the types of atoms followed by subscripts to show the number of each atom in the compound.

 H_2SO_4

2 Hydrogen	H₂SO₄ ↓ 1 Sulfur	4 Oxygen
1 Magnesium	Mg(OH) ₂ ↓ 2 Oxygen	2 Hydrogen
1 Magnesium	2 Oxygen	2 Hydrogen

- Dmitri Mendeleev (Russian), 1869
 - Recognized that there was a periodic relationship among the elements
 - Published a table with the elements arranged according to increasing atomic mass

Dmitri Mendeleev – unknown (Public Domain)

Reihen	Gruppo L — R'O	Gruppo II. RO	Gruppo III. R*0°	Gruppe 1V. RH ⁴ RO ⁴	Groppo V. RH ^a R ^z 0 ⁵	Grappo VI. RH ^a RO ³	Gruppe VII. RH R*0'	Groppo VIII. RO4
1	II⊨1							
2	Li=7	Bo=9,4	B==11	C=12	N=14	0==16	F==19	
8	Na=23	Mg==:24	Al=27,8	Si=28	P==31	8=32	Cl== 35,5	
4	K=39	Ca== 40	-==44	Ti= 48	V===51	Cr= 52	Mn=55	Fo=56, Co=50, Ni=59, Cu=63.
5	(Cu=63)	Zn==65	-=68	-=72	As=75	So=78	Br== 80	
6	Rb == 86	Sr=87	?Yt== 88	Zr == 90	Nb == 94	Mo=96	-==100	Ru=104, Rh=104, Pd=106, Ag=108
7	(Ag == 108)	Cd=112	In==113	Sn==118	Sb=122	Te=125	J=127	
8	Ca== 183	Ba=137	?Di=138	?Ce==140	-	-	-	
9	()	- 1	- 1	_	- 1	-	- 1	
10	-	-	?Er=178	?La=180	Ta=182	W=184	-	Os=195, Ir=197, Pt=198, Au=199,
11	(Au=199)	fig=200	T1== 204	Pb=207	Bi== 208	- 1	-	
12	-	-	-	Th=231	-	U==240	-	
Mendeleev's periodic table - Dmitri Mendeleev (Public Domain)								

- Lothar Meyer (German), 1870
 - Independently created a table of the elements
 - His table did not go as far as Mendeleev's
 - Mendeleev used his table to predict the existence of elements with similar properties to the elements that were already known.

Lothar Meyer - Wilhelm Hornung (Public Domain)

- By the 20th century, it became apparent that the periodic relationship involved atomic numbers rather than atomic mass.
- A modern periodic table arranges the elements in increasing order of their atomic numbers and groups atoms with similar properties in the same vertical column.
- The elements are arranged in 7 rows called **periods** and 18 columns called **groups**.

- Each period represents one electron energy shell.
 - All elements in period 2 have two shells
 - All elements in period 3 have three shells
- In general, all the elements in each group have the same number of valence electrons (electrons in outermost shell).
 - All elements in group 1 have 1 valence electron.
 - All elements in group 2 have 2 valence electrons.

- The table is divided into two large categories
 - · Metals
 - Nonmetals
- These categories are separated by a "staircase"
 - · Metals are on the left
 - Nonmetals are on the right
- A number of elements along the staircase have properties of both metals and nonmetals
 - Metalloids

Properties of Metals and Nonmetals

Metals

- · Shiny
- Malleable
- Ductile
- Good conductors of heat and electricity
- Nonmetals
- DullBrittle
- DIIU -
- Poor conductors of heat and electricity

- Metals
 - Decreases as you go left to right
 More valence electrons to get rid of
 - Increases as you go down the group
 The atom gets bigger, so it is easier to lose electrons
- Nonmetals
 - Increases as you go left to right
 Electronegativity (ability to attract electrons) increases
 - Decreases as you go down the group
 Electronegativity decreases as the atom gets bigger

